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ABSTRACT

Our aim in this work is to show that, in a "permanent regime”, the
behaviour of a viscous incompressible fluid can be, in principle, determined
by the study of a finite number of modes. It is proved that the behaviour
for t * ® of the solution to the Navier-Stokes equations is completely
determined by its projection on appropriate finite dimensional subspaces,
corresponding to eigenspaces of the linear operator, or more general
subspaces, including finite element subspaces. Some indications on the

dimension of such subspaces are given.
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SIGNIFICANCE AND EXPLANATION
If a viscous incompressible fluid is driven by time independent forces of
sufficient intensity then, after a transient period, the "permanent” regime
seems to be totally chaotic and unstructured. The present work is part of a
set of articles which, however, tend to show that there may be some structure
in such flows (at least in the case where the space dimension is 2), in

particular that they are determined by a finite number of parameters.
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AsYMPTUTIC NUMEKICAL ANALYSIS FOR THE NAVIER-STOKES EQUATIONS (1)

C. Foras and R. Temam

Introduction

Up to now the numerical analysis of the Navier-Stokes equations has been limited to
the studay ot the approximation of time dependent solutions on a finite interval of time or
to the approximation of stationary solutions (cf. among many other references [1,4,8,9]).
In the presence of a turbulent flow driven by a steady excitation a different type of

problem arises naturally: the study of the long time behavior of the solutions.

The present is an essay, the purpose of which is to show that for the 2-D Navier-
Stokes equations and, under some circumstances for the 3-D Navier-Stokes eguations, there
is a theoretical basis for determining the qualitative long time behavior of a fluid by the
study of a finite number of adequate modes. A typical result is the following one: Let
W be a finite dimensional subspace of the natural function space V. 1f W satisfies a
certain condition, then the behavior for t * ® of a solution u of the Navier-Stokes

equation is completely determined by the behavior for t + ® of its projection on W,

Several results of this type are derived in this article. While this kind of problem
was already discussed in [2], our present interest was aroused and inspired by the

guestions, conjectures and ideas due to O. P. Manley and Y, M, Treve [7,12,11), with whunm

we acknowledge fruitful discussions and correspondence. In this paper we did rnot try to
produce the best constants, and we did not try to present the maipn inequalities 1in a
nondimengional form. These improvements of the work, and other developments will appeatr in
a subsequent work {13].

The plan is as follows:

'e Notations and recapitulation of results,
2. Approximation in the subspaces vm.

3. Approximation in a general subspace.

4, Time periodic solutions,

5. Remark on Galerkin approximation.

sponsored by the United States Army under Contract No. DAAG29-~80-C-0041.
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l. Notations and recapitulation of results

assume that [ is a manifold of dimension & -1, of class c4 with a finite number of

Let & be a bounded domain of Rz, 2 =2 or 3, and let T be its boundary. We

connected components, and that @ is locally located on one side of I, we shall firstly

consider the initial value problem for the Navier-Stokes equations:
du

(1.1) T vau + (u*V)u + Vp = f in R
(1.2) Vu=0 in f

(1.3) u=0 in T

(1.4) ultso =u, .,

where V > 0 is the kinematic viscosity, u = (“1'“2) or (u1,u2,u3) is the velocity, a
vector-valued function of x € 8 and t » 0, and p 1is the pressure, p = p(x,t), and
f represents the external body force per unit of mass,

All what follows apply to the case where (1.3) is replaced by a nonhomogeneous
boundary condition, which corresponds to more realistic physical situations (Couette-Taylor
flow, [9]). We will refrain fror treating this case to avoid purely technical difficulties.

We denote by Lz(ﬂ) the space of square integrable real functions on 2 and by

H&(ﬂ) the Sobolev space made of the functions which are in Lz(ﬂ) together with their
first derivative and which vanish on [. We set, for u in Lz(ﬂ) or Lz(ﬂ)z (resp.
u in HL(”) or Hé(ﬂ)l)

luj? = [ {utx)|%ax, resp. Wi’ = [%acx) | %ax
Q Q

The space Lz(ﬂ)z admit classically an orthogonal decomposition of the form H ® G, where
G=1{v=9Yg, qe HI(Q)}

and its orthogonal H satisfies

2 £ .

H={velriM", divv =0, ven[p =0},
n the unit outward normal of [, Let also
1 £ .
v={veuo(m, div v = 0} .

it 1s clear that H and V arve Hilbert spaces for the norms |*] and !el, and their

corresponding scalar prodvcts. Wwhile |v|2 is equal to the kinetic energy of the fluid

-2-




=

p =1), we recall that for v € Vv, vl too, reduces to a

with velocity v {the density

physical guantity:
wi? = [ Jeurl vix)|%ax .
193

4
Let T denote the orthogonal projection of Lz(ﬂ) onto H and define the

operators A and B by

(1.5) Au = ~-TAu for u € D(A} =V N HZ(Q)E »

{1.6) B{u,v) = {(u,V)v], for wu,v € D(A) .

Then A 1is a self-adjoint operator in H with an orthonormal basis {wm} of
mat
eigenvectors, such that

(1.7) Ay = AW m 21, 0 <A €A <.,

Am * +% as m * +*® and
1 1
(1.8) v=pna”), twl= a7yl for uev.

The operator A is an isomorphism from D(A) onto H and from V onto V' (the dual

of V which one can identify to a superspace of H), Concerning B we recall the

following fact: B 1is a compact mapping from D{(A) X V or V x p{(A) into H and from

V XV into V's. Furthermore we have the estimates:

N TR PR T LA ST AV Y S R

(1.9) IB(u,v)h , <
v slul "Y1 YoV e/t iE s e s
fa 2 aul Y 20w
{1.10) [Blu,v}| € ¢
° ]ul1/2Iul1/2lvl’/2‘Av‘1/2

if & =2 and if &4 =2 or 3:

Jau| v
(1.11) I8lu,v)| € c,
Wtjav) .

The constants ¢ and <, depend only on R but are not easy to determine since they

invo.ve the norm of the operator A-‘, and Sobolev constants. All the above results can

be found for instance in [6]), [9].

We can now recall the functional formulation of (1.,1)-(1.4): This is the functional

difterential equation

-3-
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(1.12) Y . VAu + Blu,u) = £ u| =u
° dt ' ’ t=0 o’

where we shall assume for simplicity ug € V and

f is continuous and bounded from [0,®) into H,

(1.13)
daf 2
[N @, y') L
£ ™ belongs to Ll c(0, [A'AD]

3 It is well-known that, if & = 2, there exists a unique function u such that
2
(1.14) ue C(fo,»);n) N Lloc([0,°);V)

satisfying the equation (1.12) in V' (cf. for instance (9]). Moreover u is actually a

[, continuous function from (0,®) into D(A), which is bounded in D(A) as t + +%, We
set
(1.15) lu(e)! € ey = o (uy |, [£1,1/Vc, X)) for € 20, ;é
. (1.16) [Aule)| € ey = c3(|u0|,[f],l/\),co,).1,‘l/cx) for t > a>0
3 where
(1.17) (£]) = sup |£(t)] .
o<t

The estimate (1.15) is given in [2]; the estimate (1.16) is more recent and given in [5]}

! (cf. also {10]).

.

if £ = 3, there exists a weak solution of (1.12) bounded in H, Such a solution may
or may not be bounded in V. We will only consider such a solution if it is bounded in V
(1.18) lu(t)d <R for t 20 .
In this case it follows also from {3}, {5}, {10}, that u(t) belongs to D{A) and is
bounded in D(A) as t * @
(1.19) |Au(t)| < c4(R,[t’],1/\J,c1,X1,1/a) for t 2 a> 0.

In the sequel we will let £ = 2 or 3, and consider solutions of (1.12) which are
uniformly bounded in V on [0,®); the existence of R < ® ig an assumption if £ = 3,

and is automatic if £ = 2 (R = e, cf. (1.15)). See the comment in Remark 2.1.
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2, Approximation in the subspaces Vi

2.1. An inequality

For m @ N, we denote by Vm the space spanned by the eigenfunctions

of A, and by Pm the projector in V, H or V' onto Vm.

easy to see that

tot < A1/2

(2.1) n e, wvev,

ol < A%, wwe gy,

(2.2)
Let u(*) and v(*) be solutions of the equation
(2.3) u' + VAu + B(u,u) = £, t >0, u(0) = L
(2.4) v' + VAv + Blv,v) = g, t >0, v({0) = Vo o
where v, € V and g satisfies the same assumption (1.13) as f. We set
Ww=u-v, p = me, qp = Qmw, e=f - g, e, = Qm .
Then

9y + vAq + OBV W) + 9 B{w,0) = e

and consequently(1),

14d 2
(2.5) 5 50 1ol + vig t© = ~(BCv,p)hay) - (Blpy,u)qy)
= (Blgyeud,qy) + (eg,q.) .

The right-hand side of (2.5) can be bounded because of (1.11) by(z):

(Vye recall that (B(v,¥),8) = =(B(¢,8),¥}) for 8,¢9,% in vV,

(21

ci,c;,...,

i,ci,c;,.... denote various positive constants. The ci's
may represent different quantities at different places.

W11-0-'wml

Finally Qn =1 - Pye It s

are the same all the time,
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2726 Jng b + ey Claul + [avhlp |t + <, jaul|q [t}

€ (for € > 0 arbitrary)

-1 2
<]
€V 2 1 2 . &V 2 1 2 2 -1/2 2
€ — —— am—— .
5 19,0+ 5y |eml Al LU 35V (|au] + |av]) |pgl® + L3R S lAu]Iqu
S {by (1.16), (1.19))
-1 c2 2
2 1 2 174 2 -1/2 2
< —_— ——
eviq 1 + o= Ieml * lpml + c1c4km+1 Iqml
for ¢ a.,
We have thus proved the following
Lemma 2.1
If m is large enough, so t.hat“)
A czcz
174
(2.6) A1 23
v
>
then, for ¢t a > 0, X"’ 202
. d 2 2 1 2 174 2
(2.7 3 lagl” + vig 1T € legl® + —5— Ippl*
'
-1/2
c.c A
-1/2 1 174 m+1
' = - IE ey —————
viEv ey >0 €23 v .

2.2, The main result

We introduce the following weak mode of convergence: we will say that ¢(t)

converges essentially to 0 as t + ® (and we write ¢(t) —L28e 4 0) if:

(2.8) there exists Kk > 0, such that for every § > 0, there exists

t& satisfying

meas{T € (t,t + 1),)olt)| » 8} < k8§, for every t > tg .

e r— = .
e+ g e ¢

36c2

¢ (sup lAu(c)Iz) and actuvally it is sufficient to have
v tia

(1) >
We need xm+1

1

. by > —

m+) v2

+ lim sup |Au(t)|2.
[ o
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It is easy to see that if ¢(t) * 0 for t » ®, then o(t) —224 0, for t + ® Also

1 €,
if v € L'(0,®) cthen ¢(t) 2%+ 0 as t + =,

Theorem 2.1

We _assume that £ = 2 or that £ = 3 and that u and v are solutions of (2.3),

(2.4) uniformly bounded in V. We assume also that (2.6) is satisfied. Then:

i) If |pptult) = v(e)| » 0, [{I - B )(£(t) -~ glt))}| + 0, for t * =, then

(2.9) [(T - p )(u(e) - v(t))]| »0 for £+ =
(2.10) lutt) -~ vit)] + 0 for t + =,

1) If ppiule) - v(en}? 22 0, (1 - B )(E(t) - g(£))|? =22t2 0, for t +®, then

(2.9) still holds but instead of (2.10),

12.11) Jult) = v(t) |2 =528 0 for t + =,

Proof

We infer from (2.2) and (2.7)

=1 2 2
c
d_ 2 172, 42 .0 2 174
dt ‘qm‘ + “lxm+1|qm‘ < €V lem‘ AT |Pm| *
Whence for t » to > a:
/2
~ViA 0 (-t )
(2.12) lag(e1]2 < iqm(to)lze mH o,
-1 22 1/2
t A 4c.c ~v'A (t=-1)
1 2 174 2 m+1
+{ [ le (° + ~5= lp ()] %]e ar .

0

There exists X,k' > 0 such that for every 6 > 0, there exists CG which satisfies
> .
for ¢ t&'
meas{t & (t,t + 1), | tu(t) ~ v(1))|? > 8} < «8

meas{t @ (t,t + 1), [B (£(1) ~ g(x)|% > 8 < x'6 .

For a fixed integer

M  we take

T2ty + M, oty max(ts,a).

Then (2.12) implies




T

el

-v'k;if(t-to) :‘ 4cfc: t -v'k;if(x-T)
lagtt)]? < clu,vle +8(-+ —) at
t-M
,A:1 ac%c? t-M ~v'x;if(t-r)
+igcttia) + — cu,n)] « (f e art)

t

0

2! 4cfci
c(u,v)]

. 1
+ m8(x? oo clf9) + k—5

where
ctu,v) = suplult) = vit)|, clf.q) = sup|[f(t) - g{t)} .
t»0 t20
. i
Therefore, as t * %,
-1 2.2 —\J'X‘/zM
2 ( 1 4C1C4)(1 - e m+ )
lim sup{q (t}{* € &{—~ +
com ev ev wiat/2
m+1
- _unat/2
A ! 4c2c2 v xm+1M
[~l—-c(f g) + 13 otu v)](fi~—————-)
£V ' ev ! viat/2
m+1
:1 Aczci
+ M6k v ©(f,9) + Kk — clu,v)] .
We let 6§ + 0 and then M * ®, and we obtain (2.9).
Remark 2.1
This result which is contained in a slightly weaker form in [2], when the dimension of
space is & = 2, 1is reproduced here for the convenience of the reader,

-8-
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3. Approximation in a general subspace

In the applications the utilization of the basis {wm} formed by the eigenvectors
me1

of A 18 not practical since these functions are not easy toc determine. Therefore we
shall now show how the preceding theorem can be extended when V_  is replaced by a general
finite dimensional subspace W of V.

3.1. Assumptions

Let W be a finite dimensional subspace of V and let P(W) be the projector in
H onto W,Q(W) = I - P(W)., Since P(W) is not a projector in V, it may happen that
(e, )Y #0 if ¢ €6 W and Y 6 V, P(W)Y = 0. However, one can show (cf, Lemma 3.2
below) that there exists p(W), 0 € p(W) < 1 such that
(3.1) (e, ¥)) | € p(w)lplipl, Yyo 6 W, YW 6 Vv, P(W)Y = 0,
We associate also to W the two numbers A(W), (W)
A) = Inf{to1%,0 6 v, BP0 = 0, |vf = 1}

u(w) = sup{ivi?, y s w, |y = 1},

so that

-1/2
(3.2) o] < xw) b, vo &€ V, P(W)y = O
(3.3) i< w2yl wew .

When it is not necessary to mention the dependence on W, we will write simply
P,Q0,p,A, i, instead of P{W),e.. .

3.2. An inequality

We consider as in Section 2, the solutions u{*),v{(*) of (2.3), {2.4) and we set
W=u-v, p=PwWw, q=0Qw,e=Ff~qg.
We have
q' + VQAw + QB(v,w) + QOB(w,u) = Qe

and taking the scalar product in H with g, we get

%g_c lal? + vigi? = ~(B(v,p),q) - (B(p,u),q),

-(B(q,u),q) + (Qe,q) ~ v({p,q)) .

Using (1.11) and (3.1)-(3.3) we find that the right-hand side of this inegquality is less

than




1/
k](gelnql + vou /z{pllql + c1({Au{ + |av])|pliql + c1|Au|lq|Iql

< (by (1.16), {1.19))

-1

3
€V 2 1 2 €V 2 v 2 2
£, 2 ggr 22
3 gt ¢ g el T v 5 1q1T e = 0%l p]
3c2

2

Y 1 2 2 -1/2 2
MEu LR (Jaul + |av%lpl” + c,C Iql

3X-1 ZCZ
2 1 2 3 174 2 2 =-1/2
< evigh” + = foel® + = ( Tt v wlpl“ + c,c,2 gl tor t > a> 0 .
If c2c2
(3.4) awy > 2
v
then we set
-1/2 1 S¢ o~/
' = - I e -
(3.5) v v c1c4k(w) >0, € 5 v
and we have established:
Lemma 3.)
If (3.1), (3.4) hold, then for t 2 a > O,
-1 2 2
3A c
- d 2 2 1 2 6 174 2 2
(3.0) Solal® + viagl® <o foe|® 4 2 + v ullp|®,

v',e as 1in (3.5).

3+3. Statement of the result

As in Section 2.2, we have
Theorem 3,1

We assume that £ = 2 or that £ =3 and that u and v are solution of (2.3),

(2,4) uniformly bounded in V. Let W be a finite dimensional subspace of V such that

(3.4) 1s satisfied., Then

1) If |P(ult) - v(t)i| * 0, {(I -~ PI(£(t) - g(t))| *+ 0 for t + = then
(3.7) j(1 - P)u(t) = v(t})| >0 for t *+ =,
(3.8) jJult) = v(t)| + 0 for t + =,

1) 1f [Plult) - vien]? =222 0, [(1 - PI(E(L) - g(t))|2 =22+ 0 for t + =, then

-10-




(3.7) helds and, instead of (3.8):

(3.9) ute) - vit)] <2824 0, for v + =,

The proof, starting from (3.6), is essentially the same as that of Theorem 2.1,
In the rest of this section we yive examples and show that (3.1) is always satisfied,
while assumption (3.4) is satisfied if W is "sufficiently large".

3.4. _Assumption (3.1).

Lemma 3,2

Under the assumptions of Section 3.1, there exists p = p(W), O € p < 1 such that

(3.1) holds.'!)

Proot
1f (3.1) was not true, we could find two sequences {&.} . {¢.} , Y. €W, Y. €V,
RSN ERIFEN j h)
hEd} jot
ij = 0, such that

1
b Wby 1 > ([ (v, 0.0 200 - te by b,
J wJ l 3 wJ ! bl J wJ

v ¥
setting ¢} =T«7;T' ¥ =T\_P;T' we find
i 3
i
(3,10 12 Ly > (1 -0,
) [Cees vy ( J)

We can extract a subsequence (still denoted 3j) such that ¢5 converges to some limit ¢,
bl =1, vy € W (W has finite dimension), and dg converge weakly in V to ¥, y€ V,
fyd € 1, Py = O. At the limit, (3,.10) gives

Jte, 913 = 1, et =1, 11 <1,

1, ¥ = Xy # 0, by contradiction with Py = O,

|

so that Iyl

3.5, Assumption (3.4) - kxample

We consider the following situation which is classical in the numerical analysis of

partial differential equations and in particular of Navier-Stokes equations (cf. (9], Chap.

I, %4):

(‘)Actually the tact that P < 1 which is important in other developments, did not play
any role in the proof above. The inequality (3.1) with p(W}) = 1 {s trivial.

. |
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We are given a family {wh} , of finite dimensional subspaces of V. The set of
indices H is arbitrary but is :sgiped with a concept of limlt(1), which we denote for
simplicity lim. For example, in the Galerkin method, H=1/M, h = 1/m, and we pass to

+
the limit mh*ow, h + 0, For finite element methods (cf. [(9]), H is a family of regular
triangulations of the domain &), and we let the diameter of the largest triangle go to 0.

The main assumption on the spaces W, is the following one

(3.11) vo€eV, Int lp - ¢yl 0 as h *0 .,
h

In the case of an increasing sequence of subspaces wo of V (Galerkin method),
assumption (3,11) means simply that
(3.12) LJ W, is dense in V.

mEN
Then we see that assumption (3.4) is satisfied for h “sufficiently small”.

Lemma 3.3

Under assumption (3.11),

{(3.13) lim A(wh) = 4%,
h+0

and (3.4) is satisfied for h sufficiently small.

Proof

The proof consists in showing the more precise following statement

(3.14) For every integer m, there exists hy and, for h <h, K(wh) > Am -,

For given m and 6 > 0, the assumption (3.11) written with ¢ = w., 3 = 1,...,m,

J,
shows that there exists hm such that

Inf 0w, - P01 €8, tor j = 1,.ee,m and for every h < h_,
vew "
h

(1)A filter F with a denumerable basis; lim means roughly speaking lim.
h+0 F

-12-
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Thus for every h € hm, there exists w1,...,wm in wh' with

ﬂwj - ;jl < 4. Therefore

1f v €V, (I - P(wh))¢ = U, we have

2

Fel® = Up wlz
m

+ 1 -P )W‘z
m

2 2
RIS I R L A el
2 2
’ Am+1‘¢i - (Am+1 - 11)Ime|
m
2 ~ 2
= Al - gy = A j§1 (orwy = wy)

2., 2
> Oy - Oy = ADARED 9] .

This implies
2
x(wh) ? xm+1 - ey - x1)x1m5 ’
and the result follows by taking § small enough. L
It is also useful for later purposes to establish
Lemma 3.4

Under assumption (3.11),

(3.15) lim u(wh) a 4o,
h+0
Proof

Due tq (3.11), for every Y € V and for every h, there exists wh ] wh' with

lim ¥y ~ whl =0,
h+0

172

Due to (3.3}, lwhl < U(Wh) lWhI, and if the family u(wh) does not converge to +®

for h * 0, lim inf u(wh) € K < @, we would have at the limit: Iyl < k|y{, ¥¢ € v, and

h+0
this 1s impossible.

-3
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4. Time periodic solutions

The notations are the same as in Section 3., If the assumption (3.4) is satisfied, we
infer from Lemma 3.1 that there exist two positive constants, cg > 0, n>» 0, independent
of u and v such that

-n(t—co)
(4.1) (I - Py(ule) - v(e))]2 < c le

t
v f " b - v )2 4 - PIER) - gtt|1dT),

7

for t 2 to 2 a> 0,

We can now prove the following:

Theorem 4.1

We assume that £ = 2 or that £ = 3 and that u is a solution of (2.3) uniformly

bounded in V. Let W be a finite dimensional subspace of V such that (3.4) is

satisfied, Assume moreover that there exist periodic functions £ (*), p,(*) with value

in H and w and period T > O, such that

(4.2) 1im |£(€) - £ ()] = lim |Pu(t) - p(t)]| =0 .
te tro

Then there exists a periodic solution u, with period T of the equation

(4.3) ub + VAu_ + Blugu ) = £,

such that

(4.4) lim Ma(t) - u (t) =0 .
e
Proof

Apply (4.1) to u and v,v(t) = ult + jT). Then for 4T > t,, we obtain at time

t + T:




(4.5) (I - P)lult + &T) - u(t + (3 +l)'r))l2 <
=n(t4RT-t ) T (estr-1)
< cs{e M €
t

« [1puim - it + 3THI% + J(1 - BUECD - €0t + 31 |2 ]at) .
For € > 0 given, let te ’ to be such that for ¢t 2 te
{pule) - ple)| <&,  [£(t) - £ (2] <€,

Then from (4.5) we obtain that

2 -n(t+2.'r-to)
I(I -« PY(u(t + &T7) - u(t + (J + ")T))l P cse
te t+LT
. + csc(u,f) J’ e-n(t+lT-T)dT . acse2 I e—n(t+l’r—‘[)d‘
t t
o €
so that ) 52
. sup |(I - P)(u{t + &T) ~ u(t + (& + ymn|? < cee-nl'r R Sn ,
tot -
0

t
for every 3 > 0 and £ 2 qﬁL Therefore {u(t + &T)} is a Cauchy sequence in the space

of continuous founded functions from [to,”) into (I - P)W, Thus there exists a

continuous bounded function u from [to,“) into H, such that

periodic of period T, just because of (4.6). The convergence

(4.8) lim |u(t) ~u (t)] =0,
Lo

]

(4.6) ult + 4T) * u () as & + =, in H, uniformly in t on [to,“) .
: Since JAu(t + &1)| < ¢, forall t 2 a, £ 21, we see that |Au (t)] < c,y for all
f t ? a, and
I (4.7) ult + &T) *u (t) in V, ¥, t 2 a,
f
E It is then easy to see that u is a solution, bounded in V, of (4.3), and ug, is
\
)
{
f
'
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follows immediately from (4.6) as well as the T periodicity of u,('). he convergence

(4.4) follows from (4.8) and the fact that [Au(t) - Au_| remains bounded (by 2c,) as

t + @, 2
We then deduce the following result for stationary solutions

Theorem 4,2

The assumptions are similar to that of Theorem 4.1. we assume that there exist

f,€H and f, € W such that

(4.9) [£(e) - £} * 0, |pu(t) ~p_| * 0, for t + =,

It follows that there exists u_ @ D(A) such that

tu(t) -u ) +0 for t+ =,

(4.10)
where u_ 1is a (stationary) soiution of the Navier-Stokes equation
(4.11) VAu_ + B{u_,u ) = £_ .

3 Proof

We apply Theorem 4,1 with T > O fixed, arbitrary, and we obtain (4.3), (4.4). Now

T > 0 can be chosen arbitrarily small and since u, must be independent of T in (4.4),

i.es u is independent of t. L)

we conclude that u, has period O, -

- o — ————

-16-
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5. Remark on Galerkin approximation

We now assume that the dimension & = 2.
For simpliclity we restrict ourself to a Galerkin approximation of Navier-Stokes

equations based on the spaces Voo i,es. the family w5 of eigenfunctions of the Stokes

problem. We will show that if m 1is sufficiently large, the behavior as t *» ® of the

Galerkin approximation u is completely determined by the behavior as t + @ of a

m!

certain number m, of its modes, i.e, of Pm*um, m, < m¢ This number m, does not depend

on m,

5.1, Galerkin approximation

For fixed m, the Galerkin approximation u, of the solution u of (2.3) is defined

by:

(5.1) uﬁ + VAum + PmB(“m'“m) = P,f, t>0,
u,(0) = Ppug o

1t is classical to derive a priori estimates independent on m on u.: for example,

AN e B P4 S W

for every t 2 s ? 0:

2 t 2 2 A1(t - s)
(5.2} lugter|® + v! lu (0)#%d0 < ju (8)}" + ——~— [£)
and
~VA, t
-VA t
(5.3) lu (2|2 < |uo|2e ! +_(—1_:EL—--) (€12 .
v A1

The tollowing a priori estimate is verified by Upt
Lemma 5,1

lum(t)l is bounded independently of m and t for t > a> 0, m 20,

Proof

Taking the scalar product of (5.1) with Au ., we obtain

td 2 2 o
T 3¢ Iuml + vl}\um] = %-\I,Aum) - (B(um,um),hum .

Because of (1,10), (1.17), the right-hand side of this expression is majorized by

-17-
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e+ = T ————————

1/2 3/2 v 2 1 2 v 2 2 4
[£)au | + co]um} / lumllAum] /2 ¢ Z-lAuml +5 [£) ‘3 jAumj + c'luml ¥ .
Therefore, with (5,3)
d 2 2 2.2
(5.4) Ez-luml + leum| Sc"(1 + luml )

and for 0 € s € t, we can show by integration that

t 2
e f (1+h (9)1%)do

2 2 4
(1 + Ium(t)l )y < (1 + lum(s)l Je .

If t>a >0, we integrate in s from t - a to t and we find

¢ 2
c" [ (1+h_(0)1%)do
m

cra(l + lum(t)lz) <le *t° -1].
Using (5.2), we see that the right-hand side of this inequation is bounded by a
constant depending on & but independent of t and m and the Lemma follows. L]

5.2. Behavior as t * ® of the Galerkin approximation

Let v, be the Galerkin approximation of the solution v of (2.4)

vé + vAvm + PmB(vm,vm)'- Ppg, t>0,
(5.5)
vm(O) =Pvg +

and, as before, u  denotes the Galerkin approximation of the solution u of (2.3).
We set for m, < m ,

wo=u -V, p

m m m ny = Fm"mt Im, T O Ve @ =f -9 e =Qpe.

Then

dqm.

Frs + qum‘ + qm.PmB(vm,wm) + Qm,PmB(wm'“m) = Qm,Pme

and consequently,

2
+ qum.l = -(B(vm,wm),qum') - (B(wm,um),P

|2 ) + (O e/P ) .

mm, mIm,

The right-hand side is equal to
(On, & Ppin,) = (Blvpepy )oPrdy ) = (Blvg, (I = Pplqy )oPpay )
- ‘B(pm,'“m"qum.) - (B(qm',um),qum') ’

and because of (1,10) and Lemma 5.1, this quantity is bounded by

-18=
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|
|
|
|
!,

1/2 1/2 172 1/2
/ uvmcf ,pm.| / uqm‘n/ g1

'Q“‘ae”qma’ +C'lvm' m,

1/2 1/2 172 3/2 1/2 2
' v I I ] ' ] fu K& I
re |vm| ' Iqm.l qm. te Ipm.I P Un qm‘
172 4372
' [] u !
c*lay, [/ u
1/2 1/4 -1/4
| . n | | " .
A, |Qm.e| %y, +c Xm‘+1|pm*| qm‘ +c X lqm 12
1f
c.l
(5.6) M1 ? &)
we set
1/4
c"A
-1/4 1 m+1
[ - ot B o e —
{5.7) v 2(v - ¢ km’ﬂ) >0, € 2 3 >0,
and we bound the last quantity above (5,6) by §
eV 2 1 2 . ev 2 2 -1/4 2
= — —_— ] ————— "A ]
7 G Vg el ey V5 bo, 17+ ™y Ly,
and we find
clllx;:\/i‘
d 2 . 2 1 2
(5.8) gt 1o, 17 * Vg, ! v o ol — teg |

As for Theorem 2.1 we obtain

Theorem 5.1

We assume that £ = 2 and that m > m,, m, sufficiently large so that (5.6) is

verified. Then:




i) If

le*(um(t) - vplen| *o, (1 - P, I (E(E) - g{t))| * o0
for t + = then
(5.9) Jtx - Pp (upft) = v (e + 0 for ¢+,
(5.10) [uglt) = vple)]| + 0 for ¢ + =,
ii) 1f
1By, Cupte) = vp(en |2 —£2220 0, (1 - By M(E(E) - gle))|2 2220

for t » =, then (5.9) holds and instead of (5.10),
(5.11) fup(t) - vy (e)]2 =220 9, for t+w,
Remark 5.1
This theorem will take its full interest if we can relate the behavior for ¢ + ® of

the Galerkin approximation un of u, to the behavior for t + ® of u itself. This

question will be considered in a subsequent work.
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